
LLNL-CONF-679147

Integration of Functional Mock-up units
into a Dynamic Power Systems
Simulation Tool.

P. Top, L. Min, Y. Qin

November 10, 2015

IEEE PES General Meeting 2016
Boston, MA, United States
July 17, 2016 through July 21, 2016

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Integration of Functional Mock-up units into a
Dynamic Power Systems Simulation Tool

Philip Top, Yining Qin, and Liang Min
Lawrence Livermore National Lab

Livermore, California 94550
Email: {top1,qin3,min2}@llnl.gov

Abstract—Modelica is an object oriented modeling language
that allows straightforward specification of differential,algebraic
and discrete equations in a standardized format. It has been
used in a number of applications to support multi-domain system
simulations such as are found in the automotive and aerospace
industries. More recently it has begun to be used in the power sys-
tems industry. Modelica models can be compiled into functional
mock-up interfaces(FMI) which contain standardized interfaces
to the modeling equations and dynamically linked libraries which
allow the coupling of models with each other or into other
simulation software. The interface allows the decoupling of the
model from the mathematical solver used for the simulation.
In this document we describe in detail the coupling between
functional mock-up units and Griddyn, a dynamic power system
simulation tool, which incorporates a dae solver and variable
time step methods.

Index Terms—Simulation, High performance computing, Mod-
elica, DAE, functional Mock-up interface, dynamic simulation

I. INTRODUCTION

Simulating power systems requires models of transmission
networks, loads and generators. These models produce a set of
nonlinear differential algebraic equations(DAE) that must be
solved to arrive at the solution for a particular time instance
and integrated through time to produce a dynamic time series.
The models for generators and loads can range from simple
to very complex, and they must be specified in detail to
produce an accurate simulation. Commercial software such as
PSS/e and PSLF contain many such models for generators
and control systems and other software does as well, and
they may optionally include a some language to describe
additional models. However these models are still part of the
proprietary code base of these packages, and, though the model
descriptions are available in block diagram format, differences
still exist between the packages in the implementation details.
These differences make comparison difficult and tedious and
prevent the utilization of these models in other contexts, or
the transfer of models between software systems. Several
proposals and projects are underway to better standardize
power systems models and libraries through the use of the
open Modelica language including efforts to integrate with
the common information model(CIM)[1] and build a library
of power systems models [2] a the power systems library
[3]. Through the effort described here we hope to provide

LLNL-CONF-679147

an example of how FMU’s from these libraries and elsewhere
can be integrated into a power systems package.

A. Modelica

Modelica is a free object-oriented mathematical modeling
language for descibing large-scale and multi-domain physical
systems. Through its hiearchical language it can support
complex systems from across a wide spectrum of physical
domains such as electric, thermal, mechanical, communica-
tion, hydraulic, and other control systems The Modelicas key
features include hierarchical components modeling with actual
physical structure without data flow direction definition, code
re-usability, and decoupling of models from solvers. Modelica
is also supported with a number of standardized and highly
specialized libraries in a variety physical domains.

Several commercial packages are available for Modelica
development including Dymola(Swedish company Dynasim
AB), AMESim (LMS International), CyModelica (American
company CyDesign Labs), Wolfram SystemModeler (Swedish
company Wolfram MathCore AB) and others. Dymola is the
most popular commercial Modelica software which consists of
libraries and components from many engineering domains for
mechanical, electrical, control, thermal, pneumatic, hydraulic,
power train, thermodynamics, vehicle dynamics, air condition-
ing, etc[4]. There are also two main open source Modelica
platforms: OpenModelica and JModelica.org. OpenModelica
is Maintained by the Open Source Modelica Consortium
(OSMC- a non-profit organization) [5] is a set of integrated
platform including virtual modeling editor, result monitor and
solvers for industrial and academic usage. JModelica.org is
an source platform for simulation optimization of Modelica
models, while offering a flexible platform serving as a virtual
lab for algorithm development and research [6].

The development of complex energy systems such as the
smart grid requires advanced modelling tools. Modelica is one
such tool that can help meet the requirements of current and
future system developers[7]. Modelica has been successfully
applied to complex energy system simulation such as power
generation, building energy efficiency, power grid protection,
and smart grids [8], [9], [10]. Modelica provides mechanical
and electrical components adapted to smart grid simulation,
and a multi-agent approach for supporting co-simulation plat-

forms to connect several simulators by FMU (Functional
Mock-up unit) [11], [12].

B. Functional Mockup Interface

Modelica code can also be compiled into C code or into
a module that can be linked with other tools. This is ac-
complished through the functional mock-up interface (FMI).
The FMI interface was formalized in 2011 with a major
revision in late 2014[13]. The standard supports both model
exchange and co-simulation. The models are packaged in a
functional mockup unit (FMU) which consists of an xml
model description file, a binary dynamic linked library, and
any supporting files compressed into a single file. The original
C or Modelica code can be included, but are not necessary.
In this way, organizations can share proprietary models with
other organizations and link them together in larger systems.
Several of the tools that can be used for developing with
Modelica can generate FMUs from Modelica code including
OpenModelica and Jmodelica. FMI support is included in a
number of different environments often used for modeling
including Simulink, Labview, Python, Excel, MapleSim, and
Ansys, in addition to many of the previously mentioned
Modelica tools[?].

The FMI interface includes functionality for getting and
setting system parameters, and the information necessary for
evaluation of the system as part of the simulation. The XML
file contains the model information that is not necessary for
runtime execution such as variable names and dependency
information.

C. GridDyn, a Power Transmission System Simulator

GridDyn, a transmission system simulator, is built using
object oriented C++ methods to ensure modularity. It supports
the functional separability of models, input-output, and solver
technology to facilitate implementation and integration of
new models, new algorithms, coupling with other simulation
software, and execution on both large-scale HPC systems and
desktop platforms.

Models in GridDyn are classified into three types: primary
objects, secondary objects and submodels. Primary objects
include areas, busses, links (such as transmission lines) and
relays. For example, a relay in GridDyn is a conceptual object
that can monitor, control and manipulate one or more objects
in the system. Primary objects can contain other primary
objects in a hiearchical structure. Secondary objects are those
that attach to a bus, such as loads and generators. Submodels
control the dynamic behavior of the other components and
can be incorporated through any of the 3 classes. Mechanisms
are also in place to instrument the system to extract desired
information in log files or other communication paths, as well
as manipulate the system through events and changes in the
models (e.g. triggering a fault).

Numerous solution modes are available, including DC
power flow, AC power flow, stepped power flow, and a full
dynamic solution. The stepped power flow evolves the system
through time by repeated evalutations of a power flow solution.

The dynamic solution includes limiting features in many of
the models such as excitation limits, governor deadbands, and
output limits. The softwawre includes the capability of running
under a cosimulation framework with Gridlab-d an open
source distribution simulation platform developed by PNNL,
and NS-3 and open source communication simulator[?].

As its default solver GridDyn uses the Implicit Differential
Algebraic equation solver, IDA, for time integration of the
transient system and the KINSOL nonlinear algebraic system
solver for solution of power flow systems [14], [15]. Both of
these packages are part of the SUNDIALS suite of codes and
support both distributed and shared memory parallel execution
[16], [17]. The IDA package uses a variable step and variable
order method for implicit time integration. This method adapts
the integration order and step size to ensure that the solution
will satisfy specified accuracy tolerances. Hence, the solution
returned is highly accurate and not subject to pollution from
error generated by a large, fixed time step. The code exploits
periods of low dynamics to take larger step sizes. In addition,
IDA provides the capability to check for roots of specified
equations at each time step. When these equations change
signs within a step, IDA will find and return the exact time of
the zero-crossing. Integration in IDA is conducted either to a
specified stop time or to an earlier time when a root is found.

II. FMI INTEGRATION

For the most part, the operational sequence of the FMI
interface matches closely with that used internally inside Grid-
dyn. This similarity allows a straightforward mapping from the
internal GridDyn interface to the function calls and sequences
called for from the FMU. The FMI exposes the internal states
corresponding to the ordinary differential equation portion of
the solution, while keeping the algebraic components internal
to the FMU. In FMI version 2.0, directional derivatives are
also optionally exposed which will allow direct inclusion into
the Jacobian calculations in GridDyn. For FMI version 1.0,
and when not available for version 2.0 these the jacobian
calculations are numerically approximated. The actual inte-
gration is done through a toolbox built by Modelon[?] the
same company that maintains an an open source Modelica
environment JModelica. The toolbox is the FMI library 2.0 and
forms the basis for an FMU checker tool. The library includes
functions to extract the FMU, read and interpret the XML file
and call the appropriate FMI functions, and handle the loading
of the shared libraries used in the FMU. The library includes a
Cmake build system, so it can be incorporated in the existing
build system of Griddyn. While the interface is standardized,
the actual details of the implementation can vary between
different FMU’s particularly in the matter of input and output
causality, and the initialization details. These differences result
in increasing complexity in the actual interface. The challenges
associated with these differences has been noted in other
efforts[?].

The actual implementation interface was captured in a
Griddyn subModel. This submodel was then contained in other
models in the system that contained additional interfaces and

details to match specific requirement of other Griddyn mod-
els. Example interfaces include loads, generators, governors,
exciters and other grid specific controls. These higher level
models matched up FMU inputs and outputs with the appro-
priate signals and states inside Griddyn so the model would
interface properly. For instance, a load model in Griddyn takes
three signals from the connected bus– the bus voltage, angle,
frequency. Some or all of these signals can be used in the
model to compute the real and reactive power consumed by
the load. The FMUload model must direct these signals into
the appropriate inputs of the FMU and allow for the system
to extract the required partial derivatives.

A. initialization

Modelica code and hence FMUs can have a wide range of
possible modes for initialization. In Griddyn the most common
mode of operation is to start the dynamic simulation from a
flat start with all dxi

dt = 0. Some FMU’s have functionality
to accomplish this internally, others start from a 0 of fixed
state and others have component specific behavior. In order to
accommodate the varying methods of initialization Griddyn
includes a few user controlled flags to manage the initializa-
tion. These give the option to use the internal initialization in
the FMU, to specify an exact state, or to use the algebraic
solver in Griddyn to force the FMU state to be a flat start.

As a general strategy Griddyn defines the system equations
in terms of a residual function and solver tries to find and x
and x′ such that

f(x, x′) = 0 (1)

An equation of this form is defined for every system variable.
For power flow problems x′ is assumed to be fixed usually to 0.
The problem is formulated as a nonlinear algebraic system and
since the solver and models are logically separated in the code
and the models independent at a given layer, it is possible to
accommodate additional algebraic equations from the models
that are not part of traditional power flow equations. In the
case of using the algebraic solver for initialization, the fmi
submodel defines an equation for each state of the system

fi(xi) =
dxi
dt

(2)

where xi are the states in the fmu and dxi

dt are the derivatives
as computed by the FMU. The solver iterates until a solution
forcing the derivatives to 0 within the problem tolerances are
found.

B. Jacobian Computation

As part of the solution for the algebraic solver and for the
DAE system, Griddyn requires the computation of a Jacobian
matrix. This requires calculation or at least an approximation
of all ∂fi

∂xj
, ∂fi

∂zj
, ∂yi

∂xj
, ∂yi

∂zj
for the fmu where xi are the states,

fi is the residual function for the state xi, zi are the inputs and
yi are the outputs. The partial derivatives of the outputs may
be required for computation of Jacobian elements elsewhere
in the system. Griddyn includes 3 functions in each model for
computing the various partial derivatives, one for ∂fi

∂xj
and ∂fi

∂zj
,

one for ∂yi

∂xj
and a third for ∂yi

∂zj
. The latter two are optionally

called if the outputs are used in the residual functions for other
states. In many systems the outputs are actually states which
simplifies the computation but in others they are functions
of the states and inputs. The FMI 2.0 standard includes an
optional function for computing partial derivatives, however,
since it is optional, it is not included in all FMU’s, thus
requiring functions for numerical computation of the Jacobian
terms for the FMU.

The XML description file includes identification of all the
dependencies in the model which is used in the Griddyn
numerical compution of the jacobian to reduce the number
of computations and function calls. The basic idea is to
approximate the partial derivative with

∂fi
∂xj
≈ fi(xj + δ, x, x′)− fi(xj , x, x′)

δ
. (3)

In the simplest case this is accomplished through a sequence
of get and set calls using the FMU interface. However, this
sequence is where deviations and differences among FMU’s
and the cuasality of the sytem become problematic. In some
FMUs, the get functions do not trigger new computations and
instead return the previously computed value even though it
is technically no longer valid due to updated input values.
The values may be flagged to be updated but the get does
not trigger the new update. It simply returns whatever value
is in the internal buffers. This situation requires that a call
to get the derivatives or some other method of triggering the
updates is required when new parameters are entered and again
when the old parameter is restored. Further difficulties arise
when getting the output from the FMU for the output partial
derivatives calculations if the output requires an algebraic
computation. In some FMU’s the output is only updated at the
conclusion of a time step, which poses significant difficulties
for the Jacobian computation of the output dependencies on
the inputs and other states. It should be noted that FMUs in
this case are quite reasonable for for integration into an ODE
system since the time steps are small and all components
consistent at every time step and the derivatives consistent
at intermediate time steps. Unfortunately, in the case of
integration into DAE system using an iterative solver the
intermediate outputs are part of a larger system and thus
can be inconsistent if the FMU is not not set up to behave
consistently with that scenario. It is hoped that future versions
of the FMU specification might resolve the inconsistences and
allow specification of the required connections. To account for
these variabilities in behavior in FMUs, Griddyn includes a
number of probing functions and approximations to correct
the potential inconsistencies.

Assuming a numerical Jacobian computation is required the
system probes the fmu searching for the simplest set of calls
to compute the Jacobian. This information is stored along
with the dependency information. For system outputs if it is
determined that the outputs are only valid immediately after a
completed timestep an approximation mechanism is enabled.
An alert is issued to the solver to notify the fmu controller after

every completed timestep of the solver and the output values
are updated. For outputs required in intermediate timesteps an
approximation is made:

yi(t0 + δ) ≈ yi(t0) +
N∑
j=0

∂yi
∂xj

(xj(t0 + δ)− xj(t0))

+

M∑
j=0

∂yi
∂zj

(zj(t0 + δ)− zj(t0)) +
∂yi
∂t
δ (4)

where N is the number of states and M is the number of
inputs. The ∂yi

∂t term is only included if the output as an
explicit dependence on the independent variable. The partials
are numerically computed by repeated calls to the completed-
TimeStep function with different states and inputs. These val-
ues are updated periodically or if the values change sufficiently
to warrent a new call. The error between the predicted and the
newly computed value is usually used as mechanism for de-
termining whether or not to update the values. During a power
flow solution, the direct approximation of the jacobian is used
by repeated calls to the completedTimeStep function. This is
done since time is remaining constant during that evaluation
process and any nonlinear effects are more prevalent given
the large potential range of the values during initialization.
During dynamic time steps the linear approximation of the
output between completed time steps shown in Equation ??
will result in a small interfacing error but will be controlled
as the solver uses adaptive time steps depending on the rate
of change of the system. From a system perspective, simply
holding the output fixed between dynamic time steps will
likely result in an acceptable solution in many situations. The
linear output approximation reduces the potential error even
further, in situations where the exact value is not available.
User controls are available to force which mode to use if
desired.

C. Dynamic Simulation and Event Indicators

As stated previously, Griddyn currently uses IDA as a
nonlinear DAE solver, though it can accommodate other
solvers if required. IDA includes a root finding function which
evaluates a user defined function searching for sign changes
in the function. If it detects a sign change, IDA begins a
search routine to locate the exact time of the sign change
and returns to the user to deal with the root. A number of
the models in Griddyn make use of root finding to detect
limit violations or other triggers that cause a change in the
internal equations of the model. FMUs also implement this
functionality in an event indicator. Detecting events in an FMU
requires evaluation of the getEventIndicator function. Given
the similarities between events in FMUs and roots in Griddyn,
the mapping was very straightforward, and the interface in
Griddyn becomes a wrapper to the FMI calls.

For computations concerning a state variable a residual
function was created

fi =
dxi
dt
− x′i (5)

Fig. 1. Example workflow of modeling

where dxi

dt is from the FMU derivative evaluation and x′i is the
time derivative of the state as calculated by the solver. When
the two estimates of the time derivative match the residual
function goes to 0. The Jacobian is adjusted to include the x′i
term.

If an output approximation is necessary the solver is oper-
ated in single step mode and the states for the FMU finalized
after each step to get a updated valid output. Otherwise the
solver is allowed to continue until the specified end time, a
root is found or a predetermined event is reached. At which
point, the states of all system models are updated. If the event
causes a change in the simulation the solver is reinitialized
and computation continues. If the event is in the FMU itself
the fmisubmodel switches the FMU to event Mode, the event
is executed and fields and values are updated, new states
estimated, and the fmu is switched back into continuous time
mode for further computation.

III. EXAMPLE AND RESULTS

For testing purposes a number of FMUs were tested to
ensure consistent and correct evaluation inside Griddyn. An
example workflow is shown in Figure 1. A phsyical object is
described by mathematical expressions, these expressions are
coded in Modelica, in this case through the OpenModelica
interface. OpenModelica is used to create and FMU and that
FMU is utilized by Griddyn. As an example we modeled a
simplified single cage motor model as a load. This model was
implemented and tested in 3 contexts purely in Griddyn, purely
in Modelica, and then run through an FMU in Griddyn. In one
experiment the load on the motor was shifted at 1 second
to a torque of 0.9 pmu and back to 0.7 pu at 6 seconds.
The result is shown in Figure 2. Shown are the Modelica
and Griddyn results from the simulation in OpenModelica and
through the FMU in Griddyn. The results were very close and
the differences are shown in Figure 3. These differences are
due to the differences in sample times and error tolerances in
the different solvers and the variable time stepping in IDA.
The reactive load showed a similar pattern. The results from
the model implemented purely inside Griddyn were nearly
indistinguishable from the FMU version.

Other loads models with varying degrees of complexity
and features along with a simple governor model were tested
with all results being similarly matching between their use
inside Griddyn and through a Modelica software package.
Thus demonstrating successful inclusion of FMU into a DAE
solver system.

Fig. 2. Simulation results for Griddyn FMU vs Modelica

Fig. 3. Differences betweeen Modelica results and Griddyn Results

Early testing indicates that operating through a FMU in-
terface is somewhat slower than the native interface which is
to be expected given the additional copies and more complex
jacobian calculations. Further tests involving a large number
of FMUs are planned to determine a more precise metric
for the impact on simulation speed within a more controlled
compilation environment and system.

IV. CONCLUSION AND FUTURE WORK

This article describes the detailed inclusion of Functional
Mockup Units into a dynamic power system simulation engine
based on a variable time step DAE solver. The differences
between individual FMUs in the timing of updates and the
causality of input and output variables leads to some ap-
proximations and additional management particularly around
output variables in order to properly interface FMUs into the
simulation tool.

Once enabled, the coupling of FMUs into a power system
simulation tool allows for testing of complex systems as part
of a larger network. The system models can be used in any
number of tools and model consistency maintained between
the various tools, it also allows the possibility of multi-domain
models integrated easily into a power system simulation. The
same model can be used as part of a detailed single machine
model in a tool like Simulink and then replicated hundreds
of times as part of a larger system study without worrying
about differences in model interpretation between the various
tools. The work done here shows how these models can be
incorporated into other power system tools as well.

Future work will involve a more detailed and rigorous study
of the performance impacts of using FMUs on the simulation

in isolation and with multiple copies. Some thought is also
being put into wrapping Griddyn itself as an FMU for co-
simulation to enable more options for coordination with other
tools through and FMI interface and make power system
modeling as easy, flexible and reliable as possible.

ACKNOWLEDGMENT

This work was supported by the Department of Energys
Advanced Grid Modeling (AGM) program. The work was
performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.

REFERENCES

[1] F. Gomez, L. Vanfretti, and S. Olsen, “Binding cim and modelica for
consistent power system dynamic model exchange and simulation,” in
Power Energy Society General Meeting, 2015 IEEE, July 2015, pp. 1–5.

[2] T. Bogodorova, M. Sabate, G. Leon, L. Vanfretti, M. Halat, J. Heyberger,
and P. Panciatici, “A modelica power system library for phasor time-
domain simulation,” in Innovative Smart Grid Technologies Europe
(ISGT EUROPE), 2013 4th IEEE/PES, Oct 2013, pp. 1–5.

[3] R. Franke and H. Wiesmann, “Flexible modeling of electrical power
systems–the modelica powersystems library,” in Proceedings of the 10th
International Modelica Conference, March 2014.

[4] “Dymola,” http://www.modelon.com/products/dymola.
[5] “Openmodelica,” https://www.openmodelica.org/.
[6] “Jmodelica.org,” http://www.jmodelica.org/.
[7] A. Elsheikh, E. Widl, and P. Palensky, “Simulating complex energy

systems with modelica: A primary evaluation,” in Digital Ecosystems
Technologies (DEST), 2012 6th IEEE International Conference on, June
2012, pp. 1–6.

[8] M. Richter and F. Mollenburck, “Flexibilization of coal-fired power
plants by dynamic simulation,” in Proceedings of the 11th International
Modelica Conference, September 2015.

[9] P. Eberhart and T. S. Chung, “open source library for the simulation of
wind power plants,” in Proceedings of the 11th International Modelica
Conference, September 2015.

[10] M. Bonvini and M. Wetter, “A modelica package for building to
electrical grid integration,” in Fifth German-Austrian IBPSA Conference
RWTH Aachhen University, September 2015.

[11] O. Chilard and J. Boes, “The modelica language and the fmi standard
for modeling and simulation of smart grids,” in Proceedings of the 11th
International Modelica Conference, September 2015.

[12] J. Enerbck and O. N. Nilsson, Master’s thesis.
[13] M. consortium and M. A. P. FMIi, “Function Mock-

up Interface for Model Exchange and Cosimulation,”
”https://svn.modelica.org/fmi/branches/public/specifications
/v2.0/FMI for ModelExchange and CoSimulation v2.0.pdf”,
specification, July 2014.

[14] A. C. Hindmarsh, R. Serban, and A. M. Collier, “User documentation
for IDA v2.8.0,” Lawrence Livermore National Laboratory, Tech. Rep.
UCRL-SM-208112, 2015.

[15] A. M. Collier, A. C. Hindmarsh, R. Serban, and C. S. Woodward, “User
documentation for KINSOL v2.8.0,” Lawrence Livermore National
Laboratory, Tech. Rep. UCRL-SM-208116, 2015.

[16] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban,
D. E. Shumaker, and C. S. Woodward, “SUNDIALS: Suite of nonlinear
and differential/algebraic equation solvers,” ACM Trans. Math. Softw.,
vol. 31, no. 3, pp. 363–396, 2005.

[17] “SUNDIALS (SUite of Nonlinear and DIfferential/ALgebraic Solvers),”
http://www.llnl.gov/casc/sundials.

